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A 4D model of the behavior of 3D shapes

Time: t

Geometry: x,y,z
Shape M(t2) is the cross-section
of a 4D model by the plane t= t2

t0 t1 t2 t3 t4

Yet, a continuous model is better suited for supporting 
slow-motion, geometric and topological analysis, and 
coherent segmentation, texturing and visualization

?

Many animation and simulation packages represent 
behavior as a series of independent 3D frames

t
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3D applications migrated from slices to 3D

Early 3D GIS, Medical, and M-CAD systems 
were based on stacks of cross-sections

They migrated to continuous 3D models, 
so that they could better support:

rendering

segmentationediting

Boolean 
operations

interference
detection

analysis

simplification

compression
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Need a similar migration for animations

• Represent & slice a hyper-surface in 4D
– Voxels or Tetrahedra in 4D: 

• (x,y,z,t)+connectivity?

– Fast slice of hypercubes or tetrahedra
• Addressed by Jack Snoeyink’s CARGO project 

• Generate interpolating 4D models
– 3D morph, fitting implicit hyper-surface

• Use 4D model to build temporally
coherent segmentations of the evolving 
shape into features?

• Use 4D model to build temporally
coherent parameterizations of the 
evolving features?

(x,y,z,t)

t

?
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How to generate a 4D model?

• Design by manipulating control points of B-spline S(u,v,t) 
• Fit a hyper-surface to constraints (discussed by Greg Turk)
• Piecewise linear or polynomial morphs between 3D frames
• …
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3D morphing via Minkowski averaging

• A+B = {a+b: a∈A, b∈B}
– Matches boundary points with same normal

• M(t)=(1-t)A+tB
“Solid-Interpolating Deformations: Construction and Animation of PIPs”,

Kaul&Rossignac, C&G’92, 16(1)107-115.

– Constant connectivity, linear trajectory
– Realtime animation

M(t)= (1-t)((1-t)((1-t)A+tB)+t((1-t)B+tC))+t((1-t)((1-t)B+tC)+t((1-t)C+tD))
“AGRELs and BIPs: Metamorphosis as a Bezier curve in the space of 
polyhedra”, Rossignac&Kaul, CGForum’94, 13(3)179-184.

– Vertices move on Bezier curves

A

B

A+B

t
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From 3D morphs to tets (tetrahedra) in 4D

• Each vertex of M(t)=(1-t)A+tB 
– linearly interpolates a vertex of A and a vertex of B

• The faces of M(t) are time slices of tets in 4D
– 1, 2, or 3 vertices of a tet are on A

• Tets establish mapping
– Vertex-triangle
– Edge-edge
– Triangle-vertex

• Research: Non-convex cases
– Pairwise disjoint tets
– Minimal total distance or volume?

• Research: Temporal coherence
– Smoothness and key-frame interpolation

a1

a2

a3

b1

a1

a2

b1

b2
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Extending analysis/segmentation to 4D

• Segment each 3D frame independently and try making them 
coherent

• Segment the 4D model
• Want multi-resolution to ignore high frequency details 
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May need a simplified 4D model

• A detailed (tet) model that interpolates all slices may be too 
detailed for rapid transmission or animation

• It may not be suited for analyzing its gross features

• We want less-detailed approximations
– For transmission of Levels-of-Detail
– To accelerate animation
– For multi-resolution analysis of animations

• We propose extend simplification techniques developed for 
meshes in 3D to tetrahedral meshes in 4D
– Better coherence than simplifying each 3D frame independently

• May for example simplify a short appearance of a protrusion
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3D simplification techniques (LOD)

• Quantize & cluster vertex data (Rossignac&Borrel’92)
– remove degenerate triangles (that have coincident vertices)

– Adapted by Lindstrom for out-of-core simplification

• Repeatedly collapse best edge (Ronfard&Rossignac96)
– while minimizing bound on maximum error
– Adapted by M. Garland for mean square (quadric) error 
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• Edge-collapses were extended to tetrahedral meshes in 3D
“Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity”, Pajarola, Rossignac, and Szymczak, IEEE 

Visualization 1999.

• Need a 4D error estimator (isotropic?)
• Get a continuous family of 4D models

– Each vertex at one level of detail linearly evolves towards its 
representative  in the cruder model (Geomorph)

– Each evolving tetrahedron is a (constant-resolution) slice T(r) of a 
pentatope in 5D

4D extensions of 3D simplifications 

ecol

vsplit

t0

t1 t
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2D experiment: Multiresolution cel animation

Stack of 2D slices

Fit surface in 3D

Simplify 
surface

Cross-sectionSimplified 
animation

“Surface simplification and Edgebreaker compression 
for 2D Cel Animations”, Kwatra & Rossignac, Shape 
Modeling International, 2001.
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• We want to create a continuous family S(t,r) of 3D models 
parameterized by time t and resolution r

• We will represent it as a hyper-surface in 5D: A penta-mesh

A 5D multi-resolution behavior model

Time: t

Geometry: x,y,z The shape S(t2,r1) is the cross-section of a 
hyper-surface in 5D by the volume t=t2 & r=r1

t0 t1 t2 t3 t4

r1

Resolution: r

t-r plane
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Segmentation and parameterization

• Want segmentation and parameterization of S(t,r) that is 
coherent with respect to t and r.
– For multi-resolution behavior analysis and for coherent texture mapping
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APES Objective

• Build a multi-resolution model of evolving 3D shapes
– Consider a time-dependent family of “surfaces” M(t) and a process 

producing a “simplification” S(M(t),r), for simplicity denoted S(t,r), that 
approximates M within a given “resolution” r.

• As t and/or r evolve, the shape and topology of S(t,r) may change. 

• Infer a coherent segmentation and parameterization
– A segmentation of S(t,r) into “natural features” coherent as t or r evolve

• Some features may appear or disappear as t and r evolve
– A parameterization F(t,r)(u,v) of each feature F that changes “smoothly” 

with  t and r
• Will support texturing and analysis of evolution

– A decomposition of the t-r plane into cells, such that within a given cell, 
C, the topology of S(t,r), its segmentation into features and the 
connectivity of these features remains constant.

• The precise definitions of the “vague” terms will evolve as we match 
application needs against theoretical and practical limitations.
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Given S(t,r), APES will build

• A decomposition of the t-r plane into cells and the association 
with each cell of the list of its active features.

• A continuous 1-to-1 map C(t,r,F,u,v), from some generic 
domain in t-r-u-v space to the surface of a feature F, which 
given a point (t,r) in cell C, a feature-Id F, and two parameters 
(u,v) will return a point on S(t,r). 

• A mapping (junction chart) from (F,u,v) to (F’,u’,v’) which 
encodes the conversion between the two parameterizations at 
the common boundary of two adjacent cells.

t

r
C
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Theory, data-structure, algorithms for

• Representing the evolution model M and its multi-resolution version S 
• Computing M through interpolation of 3D frames or 4D samples
• Computing S through simplification of M
• Segmenting S(t,r) into topologically simple and domain dependent features
• Identifying where the topology of S(t,r) changes
• Parameterizing the features on individual frames, on M, and on S
• Aligning the parameterization to the natural orientation of features
• Slicing each feature to texture and render it in the desired (t,r) section
• Decomposing the t-r plane into cells of constant features and topology
• Supporting conversion between parameterizations in adjacent cells
• Measuring and categorizing shape evolution at different resolutions


